If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+36x+8=0
a = 16; b = 36; c = +8;
Δ = b2-4ac
Δ = 362-4·16·8
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-28}{2*16}=\frac{-64}{32} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+28}{2*16}=\frac{-8}{32} =-1/4 $
| 3(x+4)=30x= | | n2+n2n2n=-1 | | 5-36+24x=12+30x+11 | | 80-3x=5(x+) | | -2(x+5)=7x-37 | | 6(3+5x)=138 | | 9+4(x)=1-2x | | 4*(7+x)=64 | | x-4+2x=7+x-1 | | 8n-(4n+4)=31 | | 8x+16+8=9x+36 | | 6(8+7x)=17 | | 15-(4x+3)=-4x-12 | | 7c+3=6c+4* | | 54x+27=-3-60+60x | | -3(5x-1)=123 | | 2(n-3)-4n=2 | | 4{2x-3}=x-12+7x | | d9(d+3)=4(d-7)+5* | | -x+8=-5x+48 | | -4(-2+3)+y=0 | | F(4)=2.2(x)+1.9 | | 9(d+3)=4(d-7)+5* | | 5t^2-7t-60=0 | | -6x+3=-21-3x | | -7y+8=-7y-8 | | 41+(-32)=b | | -54=-12+3r | | 0.5(x1)-1=0.2 | | -6+8x+56=6x+42 | | 15.75=0.7w | | -4+6p+18+3p=9(p+1)+5* |